
Midterm Imperative Programming
Oct. 11 2021, 18:30-21:30h

• You can solve the problems in any order. Solutions must be submitted to the automated judgement
system Themis. For each problem, Themis will test ten different inputs, and check whether the outputs
are correct.

• Grading: you get one grade point for free. The remaining nine points are based solely on the judgment
given by Themis. The first problem is worth one grade point. The remaining four problems are worth
two grade points each, of which you score the full two points if you passed the complete test set of the
problem (i.e. 10 test cases), or one grade point if you passed at least 5 (out of 10) test cases.

• Inefficient programs may be rejected by Themis. In such cases, the error will be ’time limit exceeded’.
The time limit for each problem is two seconds.

• The number of submissions to Themis is unlimited. No points are subtracted for multiple submissions.

• There will be no assessment of programming style. However, accepted solutions are checked manually
for cheating: for example, precomputed answers will not be accepted, even though Themis accepts them.

• Note the hints that Themis gives when your program fails a test.

• Needless to say: you are not allowed to work together. If plagiarism is detected, both parties (supplier of
the code and the person that sends in copied code) will be excluded from any further participation in the
course.

• You are not allowed to use email, phones, tablets, calculators, etc. There is a calculator available on the
exam computers (see icon on the desktop). You are allowed to consult the ANSI C book and a dictionary.
You are not allowed to use a printed copy of the reader or the lecture slides, however they are available
digitally (as a pdf) in Themis. You are allowed to access your own submissions previously made to
Themis.

• For each problem, the first three test cases (input files) are available on Themis. These input files, and
the corresponding output files, are called 1.in, 2.in, 3.in, 1.out, 2.out and 3.out. These files
can be used to test whether the output of your program matches the requested layout, so that there can be
no misunderstanding about the layout and spaces in the output.

• If you fail to pass a problem for a specific test case, then you are advised not to lose much time on
debugging your program, and continue with another problem. In the last hour of the midterm, all
input files will be made visible in Themis (not the output files).

Problem 1: Comparing Fractions

You probably see immediately that 1
3 < 1

2 is true. But what about 75
43 < 73

42? This is actually false, but is harder
to see immediately.
The input of this problem is of the form a/b<c/d or a/b>c/d, where a,b,c, and d are positive integers
between 0 and 10000 (both boundaries included). The output of you program should be YES if the inequality
on the input is true, and NO otherwise.

Example 1:
input:
1/3<1/2
output:
YES

Example 2:
input:
1/6>1/4
output:
NO

Example 3:
input:
75/43<73/42
output:
NO

Problem 2: Peculiar Numbers

We call a non-negative integer a peculiar number if it satisfies the following two properties:

• the sum of its digits is a prime number,
• the product of its digits is a perfect square.

Recall, that an integer n is a perfect square if there exists an integer m > 0 such that n = m2.
An example of a peculiar number is 155, because the sum of its digits is 1+5+5=11, which is a prime

number. Moreover, the product of its digits is 1× 5× 5 = 25 which is a perfect square (because 25 = 52).
Write a program that reads from the input two integers a and b (where 0 ≤ a ≤ b ≤ 1000000 = 106). The

output should be the number of peculiar numbers in the range a up to and including b.

Example 1:
input:
2 10
output:
0

Example 2:
input:
150 160
output:
1

Example 3:
input:
42 4200
output:
106

Problem 3: Good Primes

Let p be a prime number greater than 2. We call the numbers a and b the surrounding primes of p if a is the
largest prime number less than p and b is the smallest prime greater than p. For example, the surrounding
primes of p = 11 are a = 7 and b = 13.

We call a number n, where n > 2, a good prime if n is a prime number, and its square n2 is greater than
the product of its two surrounding primes.

For example, the prime number 977 is a good prime, because its surrounding primes are 971 and 983, and
9772 = 954529 > 954493 = 971 × 983. The prime 997 is not a good prime, because its surrounding primes
are 991 and 1009, and 991× 1009 = 999919 > 994009 = 9972.

Write a program that reads from the input two integers a and b (where 2 < a ≤ b ≤ 10000 = 104). The
output should be the number of good primes in the range a up to and including b.

Example 1:
input:
10 12
output:
1

Example 2:
input:
150 160
output:
1

Example 3:
input:
42 4200
output:
287

Problem 4: Absolute Difference Triangles

The input for this problem consists of two lines. The first line holds a single integer n, where 0 < n ≤ 1000.
The second line consists of a series of n integers on which you need to perform the following steps:

1. Print the n integers in the same order that they were read from the input,
2. Compute a new series that is one element shorter as follows. The first element of this new series is the

absolute difference of the first and the second element of the original series. The second element of the
new series is the absolute difference of the second and the third element of the original series, and so on.

3. Print the series obtained in step 2.
4. Using the newly obtained series, repeat step 2 until only one value remains.

For example, let us take the input sequence [1 1 1 2 2 4 12]. In step 2, this series is reduced
to [|1-1| |1-1| |1-2| |2-2| |2-4| |4-12|] = [0 0 1 0 2 8]. Repeating this process
eventually ends with a series containing a single element, being 2 (see Example 1).

Example 1:
input:
7
1 1 1 2 2 4 12
output:
1 1 1 2 2 4 12
0 0 1 0 2 8
0 1 1 2 6
1 0 1 4
1 1 3
0 2
2

Example 2:
input:
5
1 8 2 4 7
output:
1 8 2 4 7
7 6 2 3
1 4 1
3 3
0

Example 3:
input:
8
1 1 1 2 3 3 6 18
output:
1 1 1 2 3 3 6 18
0 0 1 1 0 3 12
0 1 0 1 3 9
1 1 1 2 6
0 0 1 4
0 1 3
1 2
1

Problem 5: Matching pairs

The input of this problem are two arrays f and g, both containing non-negative integers. The input format
looks like this:

n: f[0] f[1] f[n-1]
m: g[0] g[1] g[m-1]

Clearly, n and m are the lengths of respectively the arrays f and g. You may assume that for both arrays the
length is at most 1000000 = 106. The output of the program must be the number of matching pairs (a,b)
such that f[a]==b and g[b]==a.

For example 1, the required output is 2, which is clear from the following figure.

Example 1:
input:
7: 0 3 1 0 4 0 3
5: 0 2 0 4 3
output:
2

Example 2:
input:
5: 0 2 0 4 3
7: 0 3 1 0 4 0 3
output:
2

Example 3:
input:
10: 5 1 6 8 7 4 0 9 9 1
10: 9 1 4 3 5 4 0 1 3 9
output:
3

